thesis/context: introduce topic; add pointer example

This commit is contained in:
steveej 2017-06-29 14:38:25 +02:00
parent 8081d99fb9
commit 61e3e451c6
3 changed files with 201 additions and 12 deletions

View file

@ -1,12 +1,14 @@
Automatically generated by Mendeley Desktop 1.17.8
Automatically generated by Mendeley Desktop 1.17.10
Any changes to this file will be lost if it is regenerated by Mendeley.
BibTeX export options can be customized via Options -> BibTeX in Mendeley Desktop
@misc{Endler,
author = {Endler, Matthias},
title = {{A curated list of static analysis tools, linters and code quality checkers for various programming languages}},
url = {https://github.com/mre/awesome-static-analysis}
@article{Balasubramanian2017,
abstract = {Rust is a new system programming language that offers a practical and safe alternative to C. Rust is unique in that it enforces safety without runtime overhead, most importantly, without the overhead of garbage collection. While zero-cost safety is remarkable on its own, we argue that the super-powers of Rust go beyond safety. In particular, Rust's linear type system enables capabilities that cannot be implemented efficiently in traditional languages, both safe and unsafe, and that dramatically improve security and reliability of system software. We show three examples of such capabilities: zero-copy software fault isolation, efficient static information flow analysis, and automatic checkpointing. While these capabilities have been in the spotlight of systems research for a long time, their practical use is hindered by high cost and complexity. We argue that with the adoption of Rust these mechanisms will become commoditized.},
author = {Balasubramanian, Abhiram and Baranowski, Marek S and Burtsev, Anton and Irvine, Uc and Rakamari, Zvonimir and Ryzhyk, Leonid and Research, Vmware},
file = {:home/steveej/src/github/steveej/msc-thesis/docs/DRAFT$\backslash$: System Programming in Rust$\backslash$: Beyond Safety.pdf:pdf},
title = {{DRAFT: System Programming in Rust: Beyond Safety}},
year = {2017}
}
@article{Dhurjati2003,
abstract = {Traditional approaches to enforcing memory safety of programs rely heavily on runtime checks of memory accesses and on garbage collection, both of which are unattractive for embedded applications. The long-term goal of our work is to enable 100{\%} static enforcement of memory safety for embedded programs through advanced compiler techniques and minimal semantic restrictions on programs. The key result of this paper is a compiler technique that ensures memory safety of dynamically allocated memory without programmer annotations, runtime checks, or garbage collection, and works for a large subclass of type-safe C programs. The technique is based on a fully automatic pool allocation (i.e., region-inference) algorithm for C programs we developed previously, and it ensures safety of dynamically allocated memory while retaining explicit deallocation of individual objects within regions (to avoid garbage collection). For a diverse set of embedded C programs (and using a previous technique to avoid null pointer checks), we show that we are able to statically ensure the safety of pointer and dynamic memory usage in all these programs. We also describe some improvements over our previous work in static checking of array accesses. Overall, we achieve 100{\%} static enforcement of memory safety without new language syntax for a significant subclass of embedded C programs, and the subclass is much broader if array bounds checks are ignored.},
@ -23,6 +25,55 @@ title = {{Memory safety without runtime checks or garbage collection}},
volume = {38},
year = {2003}
}
@article{Lattner2005,
abstract = {The LLVM Compiler Infrastructure (http://llvm.cs. uiuc.edu) is a$\backslash$nrobust system that is well suited for a wide variety of research$\backslash$nand development work. This brief paper introduces the LLVM system$\backslash$nand provides pointers to more extensive documentation, complementing$\backslash$nthe tutorial presented at LCPC.},
archivePrefix = {arXiv},
arxivId = {9780201398298},
author = {Lattner, Chris and Adve, Vikram},
doi = {10.1007/11532378_2},
eprint = {9780201398298},
file = {:home/steveej/src/github/steveej/msc-thesis/docs/The LLVM Compiler Framework and Infrastructure Tutorial.pdf:pdf},
isbn = {978-3-540-28009-5},
issn = {03029743},
journal = {Languages and Compilers for High Performance Computing},
number = {Part 1},
pages = {15--16},
pmid = {4520227},
title = {{The LLVM Compiler Framework and Infrastructure Tutorial}},
url = {http://dx.doi.org/10.1007/11532378{\_}2},
year = {2005}
}
@article{Merity2016,
abstract = {Recent neural network sequence models with softmax classifiers have achieved their best language modeling performance only with very large hidden states and large vocabularies. Even then they struggle to predict rare or unseen words even if the context makes the prediction unambiguous. We introduce the pointer sentinel mixture architecture for neural sequence models which has the ability to either reproduce a word from the recent context or produce a word from a standard softmax classifier. Our pointer sentinel-LSTM model achieves state of the art language modeling performance on the Penn Treebank (70.9 perplexity) while using far fewer parameters than a standard softmax LSTM. In order to evaluate how well language models can exploit longer contexts and deal with more realistic vocabularies and larger corpora we also introduce the freely available WikiText corpus.},
archivePrefix = {arXiv},
arxivId = {1609.07843},
author = {Merity, Stephen and Xiong, Caiming and Bradbury, James and Socher, Richard},
eprint = {1609.07843},
journal = {Arxiv},
title = {{Pointer Sentinel Mixture Models}},
url = {http://arxiv.org/abs/1609.07843},
year = {2016}
}
@inproceedings{Kuznetsov2014,
abstract = {Systems code is often written in low-level languages like C/C++, which offer many benefits but also dele- gate memory management to programmers. This invites memory safety bugs that attackers can exploit to divert control flow and compromise the system. Deployed de- fense mechanisms (e.g., ASLR, DEP) are incomplete, and stronger defense mechanisms (e.g., CFI) often have high overhead and limited guarantees [19, 15, 9]. We introduce code-pointer integrity (CPI), a new de- sign point that guarantees the integrity of all code point- ers in a program (e.g., function pointers, saved return ad- dresses) and thereby prevents all control-flow hijack at- tacks, including return-oriented programming. We also introduce code-pointer separation (CPS), a relaxation of CPI with better performance properties. CPI and CPS offer substantially better security-to-overhead ratios than the state of the art, they are practical (we protect a complete FreeBSD system and over 100 packages like apache and postgresql), effective (prevent all attacks in the RIPE benchmark), and efficient: on SPEC CPU2006, CPS averages 1.2{\%} overhead for C and 1.9{\%} for C/C++, while CPI's overhead is 2.9{\%} for C and 8.4{\%} for C/C++. A prototype implementation of CPI and CPS can be obtained from http://levee.epfl.ch. 1},
author = {Kuznetsov, Volodymyr and Szekeres, L{\'{a}}szl{\'{o}} and Payer, Mathias},
booktitle = {Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation},
isbn = {9781931971164},
pages = {147--163},
title = {{Code-pointer integrity}},
url = {https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov{\%}5Cnhttps://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf?utm{\_}source=dlvr.it{\&}utm{\_}medium=tumblr},
year = {2014}
}
@article{Getreu2016,
annote = {- runtime checkis are expensive
- critical with energy restriction on the target device},
author = {Getreu, Jens},
file = {:home/steveej/src/github/steveej/msc-thesis/docs/Embedded System Security with Rust - Case Study of Heartbleed.pdf:pdf},
pages = {1--24},
title = {{Embedded System Security with Rust}},
year = {2016}
}
@article{Levy2015a,
abstract = {Rust, a new systems programming language, provides compile-time memory safety checks to help eliminate runtime bugs that manifest from improper memory management. This feature is advantageous for operating system development, and especially for embedded OS development, where recovery and debugging are particularly challenging. However, embedded platforms are highly event-based, and Rust's memory safety mechanisms largely presume threads. In our experience developing an operating system for embedded systems in Rust, we have found that Rust's ownership model prevents otherwise safe resource sharing common in the embedded domain, conflicts with the reality of hardware resources, and hinders using closures for programming asynchronously. We describe these experiences and how they relate to memory safety as well as illustrate our workarounds that preserve the safety guarantees to the largest extent possible. In addition, we draw from our experience to propose a new language extension to Rust that would enable it to provide better memory safety tools for event-driven platforms.},
author = {Levy, Amit and Andersen, Michael P. and Campbell, Bradford and Culler, David and Dutta, Prabal and Ghena, Branden and Levis, Philip and Pannuto, Pat},
@ -36,3 +87,52 @@ title = {{Ownership is Theft: Experiences Building an Embedded OS in Rust}},
url = {http://dl.acm.org/citation.cfm?id=2818302.2818306},
year = {2015}
}
@misc{Endler,
author = {Endler, Matthias},
title = {{A curated list of static analysis tools, linters and code quality checkers for various programming languages}},
url = {https://github.com/mre/awesome-static-analysis}
}
@article{Xu2015,
abstract = {Since vulnerabilities in Linux kernel are on the increase, attackers have turned their interests into related exploitation techniques. However, compared with numerous researches on exploiting use-after-free vulnerabilities in the user applications, few efforts studied how to exploit use-after-free vulnerabilities in Linux kernel due to the difficulties that mainly come from the uncertainty of the kernel memory layout. Without specific information leakage, attackers could only conduct a blind memory overwriting strategy trying to corrupt the critical part of the kernel, for which the success rate is negligible. In this work, we present a novel memory collision strategy to exploit the use-after-free vulnerabilities in Linux kernel reliably. The insight of our exploit strategy is that a probabilistic memory collision can be constructed according to the widely deployed kernel memory reuse mechanisms, which significantly increases the success rate of the attack. Based on this insight, we present two practical memory collision attacks: An object-based attack that leverages the memory recycling mechanism of the kernel allocator to achieve freed vulnerable object covering, and a physmap-based attack that takes advantage of the overlap between the physmap and the SLAB caches to achieve a more flexible memory manipulation. Our proposed attacks are universal for various Linux kernels of different architectures and could successfully exploit systems with use-after-free vulnerabilities in kernel. Particularly, we achieve privilege escalation on various popular Android devices (kernel version{\textgreater}=4.3) including those with 64-bit processors by exploiting the CVE-2015-3636 use-after-free vulnerability in Linux kernel. To our knowledge, this is the first generic kernel exploit for the latest version of Android. Finally, to defend this kind of memory collision, we propose two corresponding mitigation schemes.},
author = {Xu, Wen and Li, Juanru and Shu, Junliang and Yang, Wenbo and Xie, Tianyi and Zhang, Yuanyuan and Gu, Dawu},
doi = {10.1145/2810103.2813637},
file = {:home/steveej/src/github/steveej/msc-thesis/docs/From Collision To Exploitation$\backslash$: Unleashing Use-After-Free Vulnerabilities in Linux Kernel.pdf:pdf},
isbn = {978-1-4503-3832-5},
issn = {15437221},
journal = {Ccs},
keywords = {linux kernel exploit,memory collision,user-after-free vulnerability},
pages = {414--425},
title = {{From Collision To Exploitation: Unleashing Use-After-Free Vulnerabilities in Linux Kernel}},
url = {http://dl.acm.org/citation.cfm?doid=2810103.2813637},
year = {2015}
}
@article{Affairs2015,
author = {Affairs, Post Doctoral},
file = {:home/steveej/src/steveej/msc-thesis/docs/You can't spell trust without Rust.pdf:pdf},
title = {{YOU CAN ' T SPELL TRUST WITHOUT RUST alexis beingessner Master ' s in Computer Science Carleton University}},
year = {2015}
}
@article{Caballero2012,
abstract = {Use-after-free vulnerabilities are rapidly growing in popularity, especially for exploiting web browsers. Use-after-free (and double-free) vulnerabilities are caused by a program operating on a dangling pointer. In this work we propose early detection, a novel runtime approach for finding and diagnosing use-after-free and double-free vulnerabilities. While previous work focuses on the creation of the vulnerability (i.e., the use of a dangling pointer), early detection shifts the focus to the creation of the dangling pointer(s) at the root of the vulnerability. Early detection increases the effectiveness of testing by identifying unsafe dangling pointers in executions where they are created but not used. It also accelerates vulnerability analysis and minimizes the risk of incomplete fixes, by automatically collecting information about all dangling pointers involved in the vulnerability. We implement our early detection technique in a tool called Undangle. We evaluate Undangle for vulnerability analysis on 8 real-world vulnerabilities. The analysis uncovers that two separate vulnerabilities in Firefox had a common root cause and that their patches did not completely fix the underlying bug. We also evaluate Undangle for testing on the Firefox web browser identifying a potential vulnerability.},
author = {Caballero, Juan and Grieco, Gustavo and Marron, Mark and Nappa, Antonio},
doi = {10.1145/2338965.2336769},
isbn = {9781450314541},
issn = {1450314546},
journal = {ISSTA},
keywords = {automated testing,binary analysis,debugging,dynamic analysis},
pages = {133},
title = {{Undangle: early detection of dangling pointers in use-after-free and double-free vulnerabilities}},
url = {http://dl.acm.org/citation.cfm?doid=2338965.2336769},
year = {2012}
}
@inproceedings{Ma2013,
abstract = {—Aiming at the problem of higher memory consumption and lower execution efficiency during the dynamic detecting to C/C++ programs memory vulnerabilities, this paper presents a dynamic detection method called ISC. The ISC improves the Safe-C using pointer analysis technology. Firstly, the ISC defines a simple and efficient fat pointer representation instead of the safe pointer in the Safe-C. Furthermore, the ISC uses the unification-based analysis algorithm with one level flow static pointer. This identification reduces the number of pointers that need to be converted to fat pointers. Then in the process of program running, the ISC detects memory vulnerabilities through constantly inspecting the attributes of fat pointers. Experimental results indicate that the ISC could detect memory vulnerabilities such as buffer overflows and dangling pointers. Comparing with the Safe-C, the ISC dramatically reduces the memory consumption and lightly improves the execution efficiency.},
author = {Ma, Rui and Chen, Lingkui and Hu, Changzhen and Xue, Jingfeng and Zhao, Xiaolin},
booktitle = {Proceedings - 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, DASC 2013},
doi = {10.1109/DASC.2013.37},
isbn = {9781479933815},
keywords = {dynamic detecting,fat pointer,improved Safe-C,memory vulnerability,pointer analysis},
pages = {52--57},
title = {{A dynamic detection method to C/C++ programs memory vulnerabilities based on pointer analysis}},
year = {2013}
}